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Abstract

In this study, we designed two user interfaces for automated vehicles operated in the modes that correspond to the Society of Au-
tomotive Engineers automation levels 0–3. The first is a level-centred interface that allows the driver to increase or decrease the
automation level step-by-step. The second is a function-centred interface that has independent driving controls in the longitudinal
and lateral directions. We implemented prototypes for the two interfaces and conducted driver-in-the-loop experiments on a driving
simulator to verify their effectiveness in the driver’s mode awareness. For events on the road, the participants took actions to control
the vehicle, which might cause mode changes, and answered the modes he/she believed. The experimental results show that the
mode confusion rate of the level-centred interface is twice higher than that of the function-centred interface. Also, visual feedbacks
can reduce the mode confusion rate dramatically. The results show that a function-centred user interface combined with adequate
visual and/or auditory feedback is essential to improve driver’s mode awareness when driving an automated vehicle.

Keywords: autonomous vehicles, intelligent vehicles, user interfaces, human–machine interface, human–robot interaction, human-
computer interaction, mode confusion; situation awareness

1. Introduction
According to the WHO’s global status report on road safety 2015
(WHO, 2015), about 1.25 million people die each year on the
world’s roads as a result of road traffic crashes and between 20
and 50 million more suffer non-fatal injuries. Road safety studies
indicate that human error is the major cause of road traffic acci-
dents. Medina et al. (2004) suggested that as much as 75% of all
roadway crashes can be attributed to human or driver error. The
National Highway Traffic Safety Administration reported that 94%
of fatal crashes in the USA are caused by driver error (Singh, 2015).
Driver errors include slips, lapses, mistakes, and violations (Rea-
son, 1990; Stanton, 2009). Slips and lapses are defined as atten-
tional and memory failures, respectively, while mistakes are made
due to planning failures. Full explanations of each of these error
types may be found in reference section (Reason, 1990). Driver er-
rors are made for a number of reasons, including distraction, con-
fusion, disengagement, fatigue, and violation, and are responsible
for many crashes, injuries, and fatalities.

Automated vehicles have the potential to improve road safety
by supporting or supplementing the driver in various situations.
These vehicles are equipped with both advanced driver assistance
system (ADAS) as well as an intelligent co-pilot system to provide
appropriate support to the driver in all traffic situations, from nor-
mal to safety-critical emergency situations. Typically, automated
vehicles have several different levels of automation ranging from
manual to partially and fully automatic (Hoeger et al., 2011; Gasser
& Westhoff, 2012; NHTSA, 2013; SAE International, 2016).

Automation can decrease driver workload and increase per-
formance but also degrade situation awareness (De Winter et
al., 2014). As known well, there has been some controversy re-

garding the effects of automation. For example, in a mid-level of
autonomous driving, supervising the system can increase driver
workload and fatigue. If drivers are engaged in non-driving tasks,
situation awareness deteriorates for automated driving compared
to manual driving. However, automated driving can result in
improved situational awareness compared to manual driving if
drivers are motivated or instructed to detect objects in the envi-
ronment (De Winter et al., 2014). Also, automated vehicles may
benefit novice drivers who can make mistakes not often made by
more experienced drivers, with respect to vigilance and driving
tasks. For this reason, in recent years, most automotive manu-
facturers, and even IT companies like Google, have devoted con-
certed effort to develop the next generation of automated or au-
tonomous vehicles (Markoff, 2010).

Although automated systems promise increased safety and re-
duced human error, a number of substantive human factor chal-
lenges must be addressed before these types of automated sys-
tems can become a practical reality. These challenges include
the potential for negative adaptations occurring due to misunder-
standing of, misuse of, or overreliance on the system, or changes
in attention and distraction from the driving task (Trimble et al.,
2014). In particular, as the driver’s role shifts from active vehicle
control to passive monitoring of the automated system and en-
vironment, the driver’s situational awareness in detecting system
state changes or in perceiving critical factors in the environment
becomes very important (Bainbridge, 1983; Endsley, 1996).

Norman (1981) emphasized the need for special attention to
mode errors in the design of computing systems. The author
pointed out that misclassification of the current computing sys-
tem mode could lead to input errors, which may have serious
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consequences. One reason for mode errors is the failure of the
human operator of the system to keep track of the mode changes
(Woods, 1988). Another reason is that the rules of interaction
change with mode changes (Norman, 1988). There has been sub-
stantial research conducted on mode confusion and the result-
ing automation surprise experienced by users of highly auto-
mated systems (Sarter & Woods, 1995; Sarter et al., 1997). Various
methods have been used to evaluate the properties of human-
automation interfaces and to determine the potential for mode
confusion via automated theorem proving or model checking
(Butler et al., 1988; Degani & Heymann, 2002; Heymann & Degani,
2007; Bolton et al., 2014). Degani and Heymann (2002) and Hey-
mann and Degani (2007) proposed an approach and methodology
for the analysis and generation of user interfaces, with a special
emphasis on human–automation interaction. In this method, the
correspondence between the behaviour of the machine and the
abstracted information provided to the user is formally described
and analysed by considering the machine, the user’s tasks, the
user interface, and the interface model of the machine. The au-
thors also presented a systematic procedure for generating in-
formation content for the interface that is both correct and suc-
cinct. They identified inaccurate mental models as among the ma-
jor causes of mode confusion. However, they did not discuss the
mode confusion caused by vague or inappropriate displays of the
system status on the user interface. This type of problem is re-
lated to human cognition and cannot be detected using formal
methods; thus, the potential for mode confusion must be verified
experimentally.

Regarding mode confusion in vehicle automation, early stud-
ies have focused on adaptive cruise control (ACC) systems (Fu-
rukawa et al., 2003; Horiguchi et al., 2006; Horiguchi et al., 2007;
Lee et al., 2014; Ahn et al., 2015; Eom & Lee, 2015a, b; Lee & Ahn,
2015). Horiguchi et al. (2006, 2007) found that if different modes
show similar responses, it is difficult for users to distinguish them.
Based on the observation, they proposed a new approach to esti-
mate the possibility of mode confusion using mode vectors en-
coding the input–output relations and applied it to ACC systems.
Since the similarity between mode vectors results in mode con-
fusion, they proposed a method to add some extra outputs to the
modes that are represented by the same vector. Furukawa et al.
(2003) conducted an experimental study of mode awareness using
a dual-mode ACC system with high- and low-speed modes. They
identified information that could be effective in supporting mode
awareness in complex situations if some direct information con-
cerning the system state is concealed. Through the experiments,
they found that a clear visual display of the system state is highly
effective in reducing mode confusion and that overlapping the
ranges of the high- and low-speed modes improves the drivers’
mode awareness as well as the ease of mode transition. Lee et al.
(2014), Ahn et al. (2015), Eom and Lee (2015a, b), and Lee and Ahn
(2015) studied the mode confusion of ACC systems in a simulated
environment. They proposed a new human–automation interac-
tion design methodology in which they determined the compati-
bility between the machine and interface models using proposed
criteria, and if the models are deemed to be incompatible, one or
both is/are modified to make them compatible. Also, the authors
developed a new driver interface for ACC systems based on a for-
mal method, conducted a set of driver-in-the-loop experiments
to observe possible instances of mode confusion, and redesigned
the user interface to minimize their occurrence. The experimen-
tal results showed that the clarity and transparency of the user
interface were as important in reducing mode confusion as the
correctness and compactness of the mental model.

With respect to mode confusion in highly automated vehicles,
Heymann and Degani (2013) described a hierarchy of automated
driving aids and their functionalities, with a focus on ACC and
lane centring, which is generally called lane keeping (LK). They
presented specific models of operation and suggested display con-
cepts to facilitate efficient interaction. However, they neither im-
plemented these models nor tested their displays in driver-in-
the-loop experiments for verification. In the intelligent transport
(HAVEit) project (Hoeger et al., 2011), the researchers developed
and verified a survey of users’ cognitive modes and mode transi-
tion of the system to realize an effective joint system and human–
machine interface (HMI). They also evaluated the usability of the
user interface in automated vehicles, which allows the lateral
control systems to be activated only when the longitudinal con-
trol system is active (Heymann & Degani, 2013). However, they
have not conducted research to investigate whether this type of
interface is effective for the driver’s mode awareness and, if not,
to identify alternatives to achieve better mode awareness. Lau et
al. (2018) investigated the impact of two interface designs, sim-
ple and advanced, on driver behaviour in a level 3 automated
driving systems. They examined driver’s responses resulting from
the system-initiated requests to intervene provided by the inter-
faces through human-in-the-loop experiments on a driving sim-
ulator. It was found that the advanced interface captured drivers’
attention significantly faster and helped them prepare for inter-
vention better than the simple interface. These results highlight
the importance of applying good HMI design practices to sup-
port driver performance and the need for effective HMI guidelines,
standards, and assessment methods for the HMI design for au-
tomated driving systems. However, they have not designed and
examined the HMI for level 0–3 of automated vehicles. Miller et
al. (2014) evaluated four different automation conditions—fully
autonomous vehicle, autonomous steering, autonomous speed
control, and no automation—based on their post-transition ac-
cident avoidance, situational awareness, and feelings of trust in
and comfort with autonomous or partially autonomous driving.
The results show the reaction time in the autonomous steering
condition was longer than those of the other conditions. This work
presented a method for experimenting and evaluating situational
awareness in multilevels of automated vehicles. Dönmez Özkan et
al. (2021) reviewed a state-of-the art on mode awareness from the
related domains of automated driving, aviation, and human–robot
interaction. They presented a summary of existing mode aware-
ness interface solutions as well as existing techniques and rec-
ognized gaps concerning mode awareness. They found that exist-
ing interfaces are often simple, sometimes outdated, yet are dif-
ficult to meaningfully expand without overloading the user, and
the predictive approach is a possible promising strategy to lessen
the need for mode awareness via separate indicators.

In this study, we design two types of HMI—level-centred and
function-centred—for automated vehicles and verify their effec-
tiveness with respect to the driver’s mode awareness through
driver-in-the-loop experiments. We develop two HMIs in reference
to the definition of the Society of Automotive Engineers (SAE)
automation levels 0–3 (SAE International, 2016) and the existing
HMIs. The level-centred interface increases or decreases the au-
tomation level one by one (Hoeger et al., 2011; Heymann & Degani,
2013). In contrast, the function-centred interface has independent
buttons to activate the ACC and LK systems, and thus, the au-
tomation level is increased or decreased as a result by turning
on/off each control direction. First, we design two typical inter-
faces with reference to existing HMIs. Then, we analyse two differ-
ent interfaces using a formal method (Heymann & Degani, 2007;
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Figure 1: The level-centred interface model of an automated vehicle consists of four modes and their transitions. The four modes, No Auto, Driver
Assist, Partial Auto, and High Auto, correspond to the SAE levels 0, 1, 2, and 3, respectively. Mode transition is either manually triggered by the user or
automatically triggered by the system, indicated by solid and dotted lines, respectively.

Eom & Lee, 2015a). Next, we conduct experiments on a simulated
automated vehicle to observe instances of mode confusion when
using the two interfaces. Finally, we summarize and discuss the
experimental results.

2. User Interface Models of Automated
Vehicles With Multiple Levels of
Automation
The HMI can be formally described and analysed by considering
the following four elements: the machine, the user’s tasks, the
user interface, and the user’s conceptual model of the machine
(Horiguchi et al., 2007). Since most machines do not display all of
their internal states or events to users, in this context, the inter-
nal states and their transitions are clustered and abstracted be-
fore being displayed on the user interface. This cluster of states
is referred to as a mode. From the user’s perspective, a machine
is recognized via the user interface in a mode-transition system
that comprises modes, events, and transitions among modes. This
mode-transition model of the interface is referred to as an in-
terface model. The interface model of automated vehicles must
be designed to enable the user to perform driving operations cor-
rectly and quickly (Heymann & Degani, 2007).

In this study, we designed, evaluated, and compared two
different interface models—the level-centred interface and the
function-centred interface—based on the definitions of the SAE
for multiple driving automation levels (SAE International, 2016)
and the existing interfaces. The level-centred interface increases
the automation level step-by-step. For example, only the ACC sys-
tem is active in level 2, and both the ACC and LK system are active
in level 3. If the ACC system is not active, the vehicle cannot make
the transition to level 3. The level-centred interface was designed
based on the interfaces developed in the HAVEit project (Hoeger et
al., 2011) and by Lexus. In contrast, the function-centred interface
has independent buttons to activate the ACC and LK systems. This
means that the automatic driving controls exist independently in
the longitudinal and lateral directions. The automation level is
increased or decreased by turning on/off each control direction.

The function-centred interface was designed by Benz and BMW
and used in an experimental study (Miller et al., 2014).

2.1. Level-centred interface model
In this study, we designed a level-centred interface model with
reference to the user interface of the HAVEit project (Hoeger et al.,
2011). As shown in Fig. 1, this model has four operational modes,
and the mode is changed by pressing the up and down button
on the steering wheel. Basically, the No Auto, Driver Assist, Par-
tial Auto, and High Auto modes correspond to the SAE levels 0, 1,
2, and 3, respectively (SAE International, 2016). These modes also
correspond to the driver-assisted, semi-automated, highly auto-
mated, and fully automated modes in the HAVEit project, respec-
tively (Hoeger et al., 2011).

(i) Mode 0 (No Auto) indicates the manual mode in which the
driver controls the vehicle always using the steering wheel
and pedals with the support of warning systems, such as
forward-collision warning (FCW), lane departure warning
(LDW), and blind-spot warning.

(ii) Mode 1 (Driver Assist) refers to the driver-assisted mode
in which a vehicle is controlled by the ACC system in the
longitudinal direction. However, it does not support an LK
function whereas the level 1 supports one of the LK and
ACC functions.

(iii) Mode 2 (Partial Auto) is a partially automated mode in
which both the ACC and LK system are active so that a ve-
hicle can be controlled automatically in both the longitudi-
nal and lateral directions. In this mode, the driver-initiated
auto lane change (DI-LC) system is also available, unlike the
level 2. Here, the DI-LC system means an automatic lane
change (LC) system initiated by the driver’s manual input,
for example, by pressing a button.

(iv) Mode 3 (High Auto) is the highly automated mode in which
both the ACC and LK systems, as well as the system-
initiated auto lane change (SI-LC) system, are active. Here,
the SI-LC system means an automatic LC system initiated
by the system without the driver’s intervention.
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Table 1: User-triggered transitions in the level-centred interface model.

Figure 2: Design of the level-centred interface for an automated vehicle. (a) The GUI in the gauge cluster and (b) icons for operational modes.

The driver can change the mode one step up or down by push-
ing an up or down button on the steering wheel. Also, when the
driver depresses the brake or gas pedals in the Driver Assist, Par-
tial Auto, or High Auto mode, the mode is automatically transi-
tioned to No Auto. Also, when the driver turns the steering wheel
when in the Partial Auto or High Auto mode, the mode is tran-
sitioned to Driver Assist. If the driver is inattentive or drowsy, an
arousal alarm is raised, and the system is temporarily transitioned
to the Partial Auto mode. If the driver does not respond to the
‘take-over request’ (TOR) alarm, the mode is transitioned to the
High Auto mode and the minimum-risk state (MRS). If the driver
does not respond to the alarm by operating input devices, the ve-
hicle adopts the High Auto mode and the MRS. The MRS is a last
resort provision to guarantee the driver’s safety when the driver
does not respond to a TOR. The vehicle gradually decelerates to a
standstill, while LK remains active for a certain period and auto

LC is triggered to perform lane changing and parking on the edge
of the road.

Next, we analyse and evaluate the correctness of the inter-
face model designed above. We check whether there were any in-
compatible mode transitions in the interface model, which may
cause mode confusion, and redesign the interface model if any
incompatible mode transitions exist. We applied a simplified for-
mal method using the state and mode transition table for an in-
terface model, proposed in our earlier work (Eom & Lee, 2015a).
In this approach, first, we build a state and mode transition table
for an interface model, which contains all states and modes, all
events triggered by the user or system, and their resulting tran-
sitions. Next, we check whether an interface model satisfies the
following two criteria: (i) The response of the machine to user-
triggered events must be deterministic; that is, when starting in
the same mode, identical user events should produce identical
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Figure 3: The function-centred interface model of an automated vehicle consists of five modes and their transitions. The five modes are No Auto, ACC,
LK, ACC + LK, and ACC + LK + LC, which combine longitudinal and lateral controls. Mode transition is either manually triggered by the user or
automatically triggered by the system, indicated by solid and dotted lines, respectively.

Table 2: User-triggered transitions in the function-centred interface model.

transitions between system modes. (ii) Mode changes that are not
present in the interface model must not be triggered by users. Ta-
ble 1 summarizes the mode transitions activated by user-triggered
inputs. We found no incompatible transitions in the level-centred
interface.

Finally, we designed a graphical user interface (GUI) for the
level-centred interface model in a gauge cluster, as shown in Fig. 2.
The No Auto, Driver Assist, Partial Auto, and High Auto modes are
represented by the symbols and text in the centre of the gauge
cluster, while the internal states of the ACC, LK, and LC systems
are represented by the figures located on the left in the gauge clus-
ter. We used different colours for the text and illustrations and lo-
cated them to optimize driver awareness of the vehicle status and
operational mode.

2.2. Function-centred interface model
In contrast to the level-centred interface, the function-centred in-
terface model was designed so that the automated driving sys-
tems, such as the ACC and LK systems, are operated indepen-

dently in the longitudinal and lateral directions, as illustrated
in Fig. 3. This type of interface has traditionally been adopted
by most automotive manufacturers such as Mercedes-Benz and
BMW. We configured this model with five modes: Modes 0–4 la-
belled No Auto, ACC, LK, ACC + LK, and ACC + LK + LC, respec-
tively.

(i) Mode 0 (No Auto) is a manual driving mode and corre-
sponds to the Mode 1 (No Auto) of the level-centred inter-
face.

(ii) Mode 1 (ACC) corresponds to the Mode 2 (Driver Assist) of
the level-centred interface as well as the SAE level 1.

(iii) Mode 2 (LK) corresponds to the SAE level 1 in which
an ADAS can assist the driver with either steering or
braking/accelerating, but not both simultaneously. The
level-centred interface does not have any mode that
matches this mode.

(iv) Mode 3 (ACC + LK) corresponds to the Mode 3 (Partial Auto)
of the level-centred interface.



2000 | Journal of Computational Design and Engineering, 2022, Vol. 9, No. 5

Figure 4: Design of the function-centred interface for an automated vehicle. (a) The GUI in the gauge cluster and (b) icons for operational modes.

Figure 5: Participant driving on the simulator during the experiment. (a) A virtual road environment and (b) the driving simulator.

(v) Mode 4 (ACC + LK + LC) corresponds to the Mode 4 (High
Auto) of the level-centred interface.

Each mode is transitioned manually by pressing buttons or ped-
als, as shown in Fig. 3. The buttons for ACC, LK, and LC are toggle
buttons. For the user’s convenience, when the LC button is held
down while LC is off, the ACC and LK functions are simultaneously
activated. In the ACC + LK and ACC + LK + LC modes, the mode is
transitioned to LK if the ACC button is pressed whereas it is tran-
sitioned to ACC if the LK button is pressed. If the driver presses

either the brake or gas pedal while ACC is on, the ACC function
is turned off, and the mode is transitioned to LK. If the driver
turns the steering wheel more than a specified angle while LK is
on, the LK function is deactivated, and the mode is transitioned
to ACC. As in the case of the level-centred model, if the driver is
inattentive or drowsy, an alarm is raised, and the system enters
the ACC + LK mode. If the driver does not respond to the TOR
alarm, the mode is transitioned to the ACC + LK + LC mode and
the MRS in which the vehicle is driven to a safe area. Table 2 sum-
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Figure 6: Overall system architecture of the simulated vehicle equipped with the automated driving systems: Implementation using Matlab and
Simulink in PreScan.

marizes the mode transitions activated by user-triggered inputs.
We found no incompatible transitions in the function-centred in-
terface (Eom & Lee, 2015a).

As shown in Fig. 4, we designed a GUI for the function-centred
interface model in a gauge cluster. No Auto, ACC, LK, and LC are
represented by the symbols and text, and, as in the level-centred
interface, we located these in the centre of the gauge cluster, while
the internal states of the ACC, LK, and LC systems are represented
by the figures on the left in the gauge cluster. We used different
colours for the text and illustration in the centre of the gauge clus-
ter to help the user to distinguish between the modes easily and
to be aware of the driving situation.

3. Driver-in-the-Loop Experiments
3.1. Participants
The 48 participants consisted of 36 male and 12 female adults
aged between 23 and 31 years (mean = 26.6, SD = 2.0). We used a
basic questionnaire to obtain personal information from the par-
ticipants, all of whom had a valid driver’s license, 1 or more years
of driving experience, and normal or corrected-to-normal vision.
The average driving experience of the participants was 4.0 years
(SD = 2.5), driving 2.0 days per week (SD = 1.6). 54% of the partici-
pants are aware of vehicle automation. Most vehicles have cruise
control by default, some have ACC and LDW, and no cars have
automation beyond L3. Most of them are unfamiliar with the def-
inition of SAE automation levels.

3.2. Apparatus
The experiments were performed on a fixed-base drive simulator
using the TNO PreScan software as shown in Fig. 5 (Eom & Lee,
2015a). The simulator had three 55-inch curved screen displays
that produced 130◦ (horizontal) x 30◦ (vertical) field of view for a
front view and a 10-inch display for a gauge cluster. The input de-
vice was a Logitech G27 racing wheel with brake and gas pedals.
The buttons on the wheel were configured to control various op-
erations in order to perform mode switching in the automation
systems.

In the driving simulator, we implemented all components for
a vehicle with multilevels of automation, including the GUI and
the warning, ACC, LK, and LC systems, based on PreScan using
Simulink and Matlab as shown in Fig. 6. PreScan is a physics-
based simulation platform that offers a variety of sensor emula-
tion functions to facilitate the rapid development of active safety
or ADAS. PreScan provides an actor information receiver (AIR) sen-
sor which is a virtual active scan sensor that can replace a cer-
tain physical scanner, such as radar or laser scanners. Two AIR
sensors with short and long ranges emulating radar sensors were
used for longitudinal vehicle control systems such as FCW and
ACC systems. A lane-marker sensor (LMS) was used to implement
a LK system which performs lateral vehicle control. Not only a
LMS but also two AIR sensors simulating a long-range radar and a
360◦ short-range lidar sensors were used to implement a LC sys-
tem that controls a vehicle in the lateral direction to change lanes
automatically. The role of the lidar AIR sensor is to detect vehi-
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Figure 7: Experimental road and event areas.

cles in the side lanes. The ACC system outputs the throttle posi-
tion and brake pressure, whereas the LK and LC systems output
the angle of the steering wheel. These output values are deliv-
ered to the vehicle dynamics module, which calculates the vehi-
cle behaviours, such as the velocity and acceleration. Finally, a
GUI was implemented using Matlab. In this interface, the driving–
control interface module is automatically activated when the Log-
itech G27 racing wheel is connected to the gas and brake pedals.
The vehicle dynamics, AIR_1, AIR_2, AIR_3, and LMS modules are
automatically activated by the links between the vehicle and the
sensors provided by PreScan.

3.3. Scenario
To conduct the driving simulation, we used PreScan to design a
road model with three lanes. Figure 7 shows this road, which was
modelled after the Detroit Street Circuit of the USA Grand Prix,
which consisted of actual city streets. In the proposed scenario,
we designed ten events, each to occur in a specific region. Ta-
ble 3 shows the designed traffic situation, the expected driver op-
eration, and the changes in the system mode of each event. The
modes in parentheses are those of the function-centred interface
model.

The host vehicle began its travel in the middle of three lanes.
As the host vehicle approached a specific location, one or more
of the surrounding vehicles exhibited predetermined behaviours,
such as sudden acceleration of braking. The surrounding vehicles
were driven by a driver model called the ‘Path Follower’ in PreScan,

and the host vehicle was driven by the experiment participant. In
each experiment, each vehicle followed a predetermined path. We
included the following ten events, as illustrated in Fig. 8, in the
experimental scenarios.

3.4. Procedure
This study was approved by the Institutional Review Board of
Kookmin University. Before the experiment, participants filled out
a consent form and a basic questionnaire. Then they were in-
formed about the research goals and experimental procedures.
They were explained about the definitions of the operational
modes and transitions associated with an intelligent vehicle with
various levels of automation as described in Section 2. In addition,
the user interfaces were explained and demonstrated in detail.
The experimenter ensured that participants understood the logic
of the user interface and then repeated presentations until they
recognized the mechanism. In addition, some specific instructions
were given for the experiment. For example, subjects must drive
on city roads at 60 km/h or less, not make a car tread on lane
marks, and close their eyes and remove their hands and feet from
the steering wheel and pedals when ordered to close their eyes.
Then they practiced driving in the simulator. It took 20 minutes
for each participant to complete this process before the experi-
ment.

In order to get rid of the learning effect, experiments were con-
ducted using the level-centred and the function-centred inter-
faces for different participants in different orders. Depending on
the design scenario, a certain event occurred after the host vehi-
cle arrived at a specific location. In response to each event, partic-
ipants tried to control the vehicle by pressing a button, pressing
a brake or gas pedal, and turning the steering wheel. The exper-
imenter observed the participants’ behaviour and the resulting
mode changes in the system.

After completing each event, the interface gauge cluster was
covered, and the driving simulation was interrupted to ask partic-
ipants questions about the mode change and the reason behind
it. Then, the interface was uncovered, and the participants were
asked the same questions. Their answers were recorded during
the experiment. Participants used some automated driving func-
tions while driving without any clue about the correct answers.
At the end of the driving experiments, participants were asked if
they experienced any mode confusion and why. Each experimen-
tal session lasted a total of 40 minutes.

Table 3: Event and their expected mode transitions in the experimental scenario.

Event no. Traffic situation
Expected driver
operations Expected mode transitions

Before After

1 V2 suddenly emerges at the intersection Brake Partial Auto (ACC + LK) No Auto (LK)
2 Traffic accident in front of V1 Turn wheel Driver Assist (LK) Driver Assist (No Auto)
3 V1 smoothly stops due to traffic lights Brake Partial Auto (ACC + LK) No Auto (LK)
4 The driver closes his/her eyes (Drowsiness) Close eyes Driver Assist (ACC) Partial Auto (ACC + LK)
5 V1 suddenly stops due to traffic lights Brake Partial Auto (ACC + LK) No Auto (LK)
6 The lanes are covered with snow Take over Partial Auto (ACC + LK) No Auto (No Auto)
7 V1 automatically changes lanes NA High Auto (ACC + LK + LC) High Auto (ACC + LK + LC)
8 V1 speeding up Accelerating High Auto (ACC + LK + LC) No Auto (LK)
9 Merging lanes from three to two lanes Take over Partial Auto (ACC + LK) No Auto (No Auto)
10 Under construction sign Steering Driver Assist (ACC) Driver Assist (ACC)
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Figure 8: Ten events used in the driver-in-the-loop experiments: (a) Event 1: V2 suddenly emerges at the intersection; (b) Event 2: V1 arrives at the
scene of a traffic accident site; (c) Event 3: V1 stops smoothly in response to a red traffic light; (d) Event 4: Driver closes his/her eyes (drowsy state); (e)
Event 5: V1 encounters a red traffic light and must stop suddenly; (f) Event 6: The driver should take over control because the lanes are covered with
snow; (g) Event 7: V1 automatically changes lanes in the High Auto mode; (h) Event 8: V1 must accelerate; (i) Event 9: V1 must turn the steering wheel
because of a decrease in the number of lanes; and (j) Event 10: V1 must stop because of a construction zone.

4. Results
4.1. Experiment results
4.1.1. Mode confusion rates
For each event in the experiments, we obtained the following data:
the participant’s operation, the actual mode after operation, the

mode the participant predicted without looking at the user in-
terface, the reason the participant thought and expected that
he/she was in that mode, and the mode that the participant recog-
nized after looking at the user interface. We examined the mode-
confusion rates with respect to two independent variables: the
type of interface models and whether the participant glanced at



2004 | Journal of Computational Design and Engineering, 2022, Vol. 9, No. 5

Figure 9: Mode confusion rates obtained for the two investigated
interfaces of users glancing and not glancing at the display.

the display. We considered the two types of the user interface (i.e.
level-centred and function-centred models) and two possibilities
for glancing at the display (i.e. glancing and not glancing). Fig-
ure 9 shows the mode-confusion rates for the participants. When
the participants could not see the display, the mode confusion
rates for the level-centred and function-centred interfaces were
23 and 10%, respectively. However, they were reduced to 0.42 and
0.00% if the display was visible. Irrespective of whether the partic-
ipant glanced at the display, the confusion rate for the function-
centred interface model is lower than that of the level-centred
model. Also, the confusion rate when glancing at the display is
lower than the case when not glancing at the display. To assess the
significance of these two factors, we also carried out an analysis
of variance of the measurements using SPSS software. The dif-
ference between the level-centred and function-centred interface
models is significant (F 1,47 = 14.1, P < 0.05), as was the difference
between glancing and not glancing at the display (F 1,47 = 86.1,
P < 0.05).

4.1.2. Mode confusion error analysis
Tables 4 and 5 present the mode confusion rates for the two inter-
face models evaluated in this study. To help us determine how the
participants recognized changes in the mode of the automated
systems during the experiments, these tables compare the ac-
tual modes with the modes recognized by the participants. As
shown in Table 4, for the level-centred interface, 99.6 and 78.8%
of the mode changes were recognized correctly with and without
glancing at the display, respectively. As shown in Table 5, for the
function-centred interface, 100 and 91.3% of the mode changes
were recognized correctly with and without glancing, respectively.
Therefore, these results indicate that it was easier for participants
to use the function-centred interface than the level-centred in-
terface. In both the level-centred and function-centred interfaces,
the mode confusion rate after glancing at the display was signif-
icantly reduced compared to that before glancing. Therefore, we
can conclude that the design of the user interface was clear and
distinct with respect to their perception by drivers.

With the level-centred interface, before the display was viewed,
the highest mode confusion rate occurred in the Driver Assist

mode. After being viewed, only one mode confusion instance oc-
curred in the Partial Auto mode. Some participants who referred
to the Driver Assist mode as the No Auto mode believed that
the mode was changed to No Auto by manually controlling the
steering wheel in the High Auto and Partial Auto modes. Those
who considered the Driver Assist mode as the Partial Auto mode
were confused about the definitions of the two modes. Confusion
while in the No Auto mode occurred because the participants had
forgotten their previous action. Instances of mode confusion oc-
curred mostly after Event 4, where the mode changed automati-
cally from any other mode to Partial Auto mode when the partici-
pant was driving while drowsy. The participants were aware of the
mode before closing their eyes either because they did not trust
the system, or they forgot the mode transitions while drowsing.

With the function-centred interface, before the display was
viewed, the highest mode confusion rate occurred in the ACC + LK
mode. The participants thought of the ACC + LK mode as the No

Table 4: Mode confusion rates before and after glancing at the level-centred interface in the experiments.

Table 5: Mode confusion rates before and after glancing at the function-centred interface in the experiments.

  Recognized Modes   

 

 
No Auto ACC LK ACC+LK ACC+LK+LC 

Before After Before After Before After Before After Before After Before After 

No Auto 96% 100% 2% 0% 2% 0% 0% 0% 0% 0% 4% 0% 

ACC 5% 0% 95% 100% 0% 0% 0% 0% 0% 0% 5% 0% 

LK 6% 0% 0% 0% 92% 100% 2% 0% 0% 0% 8% 0% 

ACC+LK 5% 0% 2% 0% 15% 0% 76% 100% 2% 0% 24% 0% 

 ACC+LK+LC 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 0% 0% 

Actual 

Modes

Mode Confusion
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Table 6: Questions and responses after an experiment with the level-centred interface.

Questions Response Likert 5-point scale

Strongly
disagree Disagree Undecided Agree

Strongly
agree Mean SD

1. This vehicle helped the driver to recognize the
surrounding environment correctly.

0% 8% 21% 63% 8% 3.71 0.83

2. The interface effectively transmitted driving
information.

0% 0% 25% 58% 17% 3.92 0.64

3. I experienced mode confusion while driving. 4% 29% 17% 33% 17% 3.29 1.17
4. This automated vehicle is satisfactory. 0% 25% 29% 33% 13% 3.33 0.99
5. This automated vehicle is safe. 0% 25% 33% 21% 21% 3.38 1.07
6. This automated vehicle is convenient. 0% 13% 25% 38% 25% 3.75 0.97
7. This automated vehicle is reliable. 0% 17% 29% 38% 17% 3.54 0.96
8. I would use this vehicle often. 8% 21% 33% 29% 8% 3.08 1.08
9. I would use this vehicle if it were free of charge. 0% 0% 13% 29% 58% 4.46 0.71
10. This vehicle is similar to the automated vehicle that I
expected.

17% 17% 25% 25% 17% 3.08 1.32

Table 7: Questions and responses after an experiment with the function-centred interface.

Questions Response Likert 5-point scale

Strongly
disagree Disagree Undecided Agree

Strongly
agree Mean SD

1. This vehicle helped the driver to recognize the
surrounding environment correctly.

0% 0% 25% 67% 8% 3.83 0.55

2. The interface effectively transmitted driving
information.

0% 0% 17% 63% 21% 4.04 0.61

3. I experienced mode confusion while driving. 29% 38% 25% 8% 0% 2.13 0.93
4. This automated vehicle is satisfactory. 0% 4% 29% 50% 17% 3.79 0.76
5. This automated vehicle is safe. 0% 8% 29% 46% 17% 3.71 0.84
6. This automated vehicle is convenient. 0% 0% 17% 46% 38% 4.21 0.71
7. This automated vehicle is reliable. 0% 4% 33% 33% 29% 3.88 0.88
8. I would use this vehicle often. 0% 8% 29% 38% 25% 3.79 0.91
9. I would use this vehicle if it was free of charge. 0% 0% 0% 46% 54% 4.54 0.50
10. This vehicle is similar to the automated vehicle that I
expected.

0% 17% 25% 38% 21% 3.63 0.99

Auto, LK, and ACC + LK + LC modes in Event 4. This mode con-
fusion occurred for the same reasons as in the level-centred in-
terface. Also, the confusion between ACC + LK and ACC occurred
because the participants forgot their previous actions. Likewise,
the confusion while in the No Auto and ACC occurred because
the participants had forgotten their previous action. The partic-
ipants considered the LK mode as No Auto mode were confused
because they did not trust the system. A participant regarded the
LK mode as the ACC + LK mode due to the definitions of the two
modes.

In Event 4, we asked a specific question regarding how the au-
tomated system operated when the driver dozed at the wheel. All
of the participants responded that the mode was changed to Par-
tial Auto or ACC + LK regardless of the interface type, and they
expected that the system would ring an alarm in order to wake a
driver who was dozing at the wheel.

4.1.3. Carry-over effect analysis
Since the same subjects participate in all experimental treat-
ments, there is a possibility that a previous treatment can change
behaviour in a subsequent experimental treatment. This is known
as a ‘carryover’ effect. The carryover statistic measures the effect
of one treatment on the next treatment. For example, suppose
that the reference treatment has a strong effect, and the test treat-

ment has a weak effect. If the washout period is not long enough,
the residual effects of the reference treatment in the first period
can cause the effects of the test treatment in the second period
to appear stronger than they actually are. To confirm that the car-
ryover effect is significant, the P-value for the carryover effect is
compared with the significance level (α) which of 0.05 is common.
If the P-value is less than α, the carryover effect is statistically
significant. To analyse the carryover effects on our experiments,
we performed an equivalence test for a 2 × 2 crossover design
using Minitab. The carryover effect is not statistically significant
because the estimated carryover effect is 0.452 and the P-value is
0.498 (P > 0.05).

4.2. Questionnaire survey
4.2.1. Summary of questionnaire results after each experi-

ment
After performing the experiment with each interface, the partic-
ipants completed a questionnaire consisting of seven questions
related to their subjective evaluation (i.e. whether the participant
was confused during the experiment, the reason for his/her con-
fusion, the action that he/she took when confused, and whether
the interface effectively transferred the state of the vehicle). We
analysed the questionnaire responses using a Likert five-point
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Figure 10: Comparison of questionnaire results between the
level-centred and function-centred interfaces.

scale. Tables 6 and 7 summarize the responses of the participants
regarding the level-centred and function-centred interfaces, re-
spectively. In addition, Fig. 10 compares the questionnaire results
for the two interface models. As shown in Table 7, for the level-
centred interface, 67% of participants experienced instances of
mode confusion. The participants reported that this mode con-
fusion occurred because the mode transitions differed when they
controlled the pedals and steering wheel in the Partial Auto and
High Auto modes. For example, when the driver turns the steer-
ing wheel while in the Partial Auto or High Auto mode, the mode
transitions to the Driver Assist mode. However, if the driver de-
presses the pedals, the mode transitions to the No Auto mode.
Therefore, while driving, the participants must remember what
they control and how mode transitions occur. In addition, the par-
ticipants answered that except for the No Auto mode, it is difficult
to intuitively understand the terms that indicate each mode. For
the function-centred interface, 33% of participants experienced
instances of mode confusion, as shown in Table 7.

As also shown in Table 8, for the participants who experienced
mode confusion in the level-centred and function-centred inter-
face models we asked three additional survey questions concern-
ing the reason for his/her confusion, the action that he/she took
when he/she was confused, and whether the mode confusion ex-
posed them to danger. In the first question, 46% of participants
in both interfaces experienced instances of mode confusion due
to the complexity and difficulty of the operation methods of the
automated systems. 26% of participants responded that the mode
terms for the level-centred interface were not acceptable and re-
quired some effort to remember their meanings. 16% of partici-

pants responded that they felt mode confusion and did not know
what to do in response to their confusion. Regarding the second
question, most of the participants tried to drive manually when
they experienced mode confusion. Some participants resolved the
confusion by taking proper actions after glancing at the display.
For the third question, 64% of participants experienced mode con-
fusion when using the level-centred interface, as compared to four
when using the function-centred interface. This result indicates
that the level-centred interface is prone to mode confusion, and
thus to increased risk of danger.

4.2.2. Summary of questionnaire results after all experi-
ments

After all the experiments had been completed, the participants
were asked to complete a questionnaire to compare the two in-
terfaces. The participants’ responses, as summarized in Table 9,
show that for all questions, the participants indicated that the
function-centred interface was better than the level-centred in-
terface. They reported that, in the function-centred interface, the
modes were clearly distinguished by having to turn on/off each
button. In addition, the participants preferred the LK mode in the
function-centred interface system and recommended that the LK
system be installed in automated vehicles. On the other hand,
the participants reported that the driving workload in the level-
centred interface required that they remember the number of but-
tons that had been pressed as the systems were combined, and
the mode terms did not clearly explain each mode. Finally, re-
garding mode preference, more than half selected the Partial Auto
mode in which both the ACC and LK system were available.

4.2.3. Limitations
Several limitations are apparent in the present study.

First, there is a pre-learning effect on the user interface. The
function-centred interface is very similar to the current vehicle
interface; thus, the subjects are more familiar with the function-
centred interface than the level-centred one. However, it is impos-
sible to exclude such pre-learning effects from the participants
because the function-centred interface has long been widespread
worldwide.

Second, there is a bias on the subject’s age and gender. We re-
cruited a sample of participants from South Korea and many from
the university campus. The average age of the participants was
26.6 (SD = 2.0) years, whereas that of whole Korean drivers was
46.6 (SD = 14.7) years in 2021 (Korean National Police Agency,
2019). The male-to-female gender ratio was 3:1 in the experi-
ments, whereas the gender ratio of Korean drivers was 4:3 in 2021.

Table 8: Questions and responses after experiencing the mode confusion.

Questions Response Number of participants

Level-centred Function-centred

1. Why was he/she was confused? Incorrectness of cluster’s information 8% 0
Forgetting previous actions 4% 0
Difficulty of operation 33% 13%
Lack of understanding mode terms 13% 13%
Did not know how to do after 8% 8%

2. Which action did he/she take when confused? Manually drive 46% 16%
Do nothing 8% 4%
Drive while glancing at the display 13% 13%

3. Does the mode confusion expose people to danger? Yes 64% 16%
No 4% 16%
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Table 9: Questions and responses after all experiments were completed.

Questions Number of participants

Level-centred Function-centred Etc.

1. Which interface effectively transmits the information? 13% 88% 0%
2. In which vehicle do you experience more mode confusion? 71% 21% 8%
3. Which vehicle do you feel is easy to operate? 29% 71% 0%
4. In which vehicle can you handle a crisis quickly? 33% 46% 21%
5. In which vehicle do you feel less workload? 21% 75% 4%
6. In which vehicle do you maintain lanes easily? 17% 79% 4%
7. Which vehicle is more convenient? 21% 79% 0%
8. Which vehicle is safer? 17% 67% 17%
9. With which vehicle are you most satisfied? 13% 88% 0%
10. Which mode would you prefer to use often? No Auto 0%

ACC 13%
LK 17%

ACC + LK 63%
ACC + LK + LC 8%

Therefore, there is a significant difference in age and gender dis-
tribution between the sample and the population.

Third, the experiment results obtained from simulator research
differ from those shown in the real world. The simulator results
need to be evaluated with regard to their generalizability to the
real world. Driver behaviour data collected in artificial scenarios
under controlled conditions may not be like driver behaviour in
real-world situations. It is, therefore, necessary to verify the valid-
ity of the simulator results. This work remains as future work.

5. Conclusions
In this study, we developed two interface models for an automated
vehicle with options to operate in four and five different automa-
tion modes, respectively, and then conducted driver-in-the-loop
experiments to examine the effectiveness of these interfaces with
respect to driver’s mode awareness. The results can be summa-
rized as follows:

(i) Intuitive and familiar interface model: The experimental re-
sults show that the function-centred interface was a more
comprehensive user interface than the level-centred inter-
face. The overall mode confusion rates for the level-centred
and function-centred interfaces were 23 and 10%, respec-
tively. Since the level-centred interface is not familiar to the
people and represents various combinations of automated
functions, it is not intuitive and thus may cause more mode
confusions than the function-centred interface, which is an
extension of the current ADAS.

(ii) Visual and auditory feedback: When the drivers saw the dis-
play after completing each event, the mode confusion rates
for both level and function-centred interfaces were reduced
dramatically. We could confirm that the role of the feed-
back was very important for drivers to recognize the vehi-
cle state or mode. Of course, this visual feedback can be re-
placed with auditory feedback. However, the effect of au-
ditory feedback fades away in the long term while it is ex-
pected to be the same as that of visual feedback in the short
term.

Therefore, for easier and safer driving of automated vehicles,
a function-centred interface with appropriate visual and auditory
feedback is more desirable in terms of being more intuitive and
easier to understand. To this end, various advanced user interface

technology can also be introduced into the interface (Lee & Yoon,
2019; Atif et al., 2020; Li et al., 2020; Bustos et al., 2021; Chang et al.,
2021; Dhiman & Röcker, 2021; Lee & Yoo, 2021; Wang et al., 2021).

In this work, the experiments were performed, assuming that
the severity of mode confusion was the same in all situations.
However, the severity of accidents due to mode confusion may
vary depending on the situation. Therefore, it is necessary to cre-
ate scores for the severities of mode confusion and use them in
experiments and comparison of the interfaces. Moreover, there
is a need to develop a driver monitoring method that detects
whether the driver is currently in mode confusion (Zhang et al.,
2017; Kopuklu et al., 2021; Bogdoll et al., 2022; Hu et al., 2022). In ad-
dition, if the system detects a driver’s mode confusion, it should
warn the driver so that the driver can cope with it. If the driver
fails to cope, the system should be able to manage the situation
instead of the driver.
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